Kinect Fusion

Reimplementation

Kerem Yildirir, Marc Benedi San Millan, Yigit Aras Tunali, and Poyraz
Kivanc Karacam

"Team 18”

Figure 1: Example output of our method generated using the freiburgl_zyz dataset [5]. From left to right: First depth input from
the sensor, normal vector reconstruction after processing the first frame, normal vector reconstruction of the model after processing
796 frames, and RGB reconstruction of the model after processing 796 frames.

1 Abstract

We re-implement the solution proposed by Izadi, S.
et. al. [2]. Tt is a method for real-time large-scale
indoor dense reconstruction, and is highly appli-
cable in many areas such as Robotics, Augmented
Reality and Human-Computer Interaction. We use
the proposed 4 step pipeline with a few changes.
Even though we were not able to capture 30FPS
real-time performance, we successfully reconstruct
various scenes using the proposed methods.

2 Introduction

In the field of Computer Vision, tracking of camera
and simultaneously mapping of the physical scene
is a problem that have been studied thoroughly.
Approaches such as structure from motion (SFM)
have been used to create a sparse representation
and multi view stereo (MVS), but their focus was
not real-time performance. In Kinect Fusion [2], it
is showed that a robust real-time performance was
possible, using a low cost depth sensor Microsoft
Kinect and leveraging the performance of GPUs.
This approach paves way for exciting new develop-
ments in the field of Augmented Reality with the
example of Geometry aware AR in [2] and Robotics

with it’s real time performance and dense recon-
struction.

3 Related work

Before this paper, there were other real-time ap-
proaches for the problem of real-time tracking and
mapping PTAM [3] [4]. PTAM introduces the
notion of parallelizing tracking and mapping pro-
Using key features and key frames, they
were able to avoid redundant frame processing and
executing high cost bundle adjustment in a real-
time manner. The focus of PTAM is it’s real-time
tracking and usage of sparse features result in a
sparse point cloud models which make it difficult to
use for dense reconstruction. Another state of the
art approach is LSD-SLAM [5] which runs on CPU
real-time using semi-dense depth maps and it’s fol-
lowing work Direct Sparse Odometry[1], which im-
proves accuracy and performance. Our approach
was proposed by Izadi, S. et. al. [2]. In their work,
they leverage the compute power of the modern-
day GPGPUs coupled with the commodity depth
sensor Kinect to accomplish a real-time dense re-
construction of the scanned surface out of depth
images. Kinect uses structured IR light to mea-

cesses.

sure depth. A global static reconstruction model is
used as a reference for each newly observed frame.
Correspondences of a new frame are found in the
global model, and the reconstruction is fused with
the new frame’s TSDF values during the Volumet-
ric Integration step.

4 Method

Surface
Prediction

R, v
Measurement |V Pose

Update Sk

N Estimation Tg.k Reconstruction Tg,k—l
Compute

Burface Nertex and|

Normal Maps

R,
Input - F=[CP of Predicted == Integrate Surface |==—-
Measurement

into Global TSDF

Ray-cast
TSDF to Compute
Surface Prediction

and Measured
Surface

1 Tois Vir Nes |

Figure 2: Overall System Workflow [2]

4.1 Surface Mesurement

We followed the same methodology as [2], where
at each frame k we get the raw depth map which
is with calibrated depth measurements Ry (u) € R
with u being a pixel in the image domain. We
construct an image pyramid, then apply a bilat-
eral filter to Ry at each pyramid level and have
a depth map D; with reduced noise. Afterwards,
back-projecting the depth values to the sensor’s
frame of reference produces the vertex map V.
We then compute the normal map from the ver-
tex map we created using central differences for
every level.

4.2 Surface Reconstruction
4.2.1 Voxel grid representation of scene

We represent the scene as a 512x512x512 voxel grid
with 0.01m as our voxel size. We assume that the
camera is in the center of the grid in the first frame
received from the sensor such that we are able to
switch camera and grid coordinate systems eas-
ily by just scaling the 3D points we are process-
ing.

In figure 3, a slice of the voxel grid can be
seen.

Figure 3: Left: Raycasted surface. Right: Slice of the TSDF.
Zero crossings black, negative values grey, positive values white.

4.2.2 Integration of the volume

Every time we receive a new depth frame, we go
through every voxel in the grid, project them back
to the depth image using the previous camera pose,
then update their distance and weight values in a
weighted average fashion mentioned in the paper
[2]. If the voxel is out of the camera frustum, or
it is too far away from the surface, it remains un-
modified. The update step for a single voxel is as
follows:

% = u in homogenous coordinates
A= |IK- Vil
sdf = depthImage(u) - ||translation — v9||
if sdf >= —truncation then
if sdf >0 then
newValue = min(1, sdf /truncation)
else
newValue = maxz(—1, sdf /truncation)
currTSDF = grid(v).distance
currWeight = grid(v).weight
newWeight = 1)
grid (v) distance =TSP scureifeight smcwl lucsncu g
grid(v).weight = min(newWeight + currWeight, Waz)

> if sufficiently close to surface

Figure 4: Application of the signed distance function to a valid
voxel in the grid

In this step we have 2 important hyperparameters
to decide:

e Truncation value
e Maximum allowed weight

Too low truncation values result in loss of informa-
tion because it would constrain the updating step
too much, whereas too high values result in redun-
dant computation and errors in ray-casting. After
testing out with multiple values and sequences, we
decided on a value of 5 voxels.

4.3 Surface Prediction

In order to have a dense representation of the
scene, we cast rays to the scene from the current es-
timated camera position. For every pixel, we com-
pute a vector and we shoot a ray from the camera
in that direction along the voxel grid until either
we encounter a zero-crossing or go out of the grid.
One hyperparameter here is the length of one ray
step. Initially, we set it to a single voxel edge. Set-
ting something smaller leads to denser and slightly
more accurate surface predictions, but also reduced
performance.

4.4 Pose Estimation

4.4.1 Correspondences

Figure 5: Visualization of some of the correspondences achieved

with projective data association. Left: Normal reconstruction
from the model. Right: Normal reconstruction from the sensor’s
depth image.

For finding correspondences we again use the same
method suggested in [2], which is the projective
data association method. It must be noted that
this method heavily relies on the small inter-frame
movement assumption. Since the model is built
throughout the process and is more robust and less
noisy than the raw depth values received from the
camera, model-to-frame tracking for ICP is pre-
ferred [2].

44.2 ICP

During the ICP step, as in [2], we are linearizing it
with the small movement assumption. The frame-
to-model tracking is realized by aligning the incom-
ing surface measurement (Vj, Ni) with the model
prediction from the previous frame (V7 |, NY? ;)
using point-to-plane error metric which is as fol-
lows. Then the point-plane energy term is as fol-

lows:
E(Tg,k) =

> (T Vi () —

ng—l)Tng—l(u)||2

And the linearized incremental transform, where z
denotes the iteration number, is as follows:

1 a =y iz
The = [RFF] = |- 1 B
v _B 1 tz

The incremental transform after each iteration,
parametrized x vector and the incremental point
transfer are then as follows:

z z—1
T2y = Tine T2,

€r = (ﬁ) Y, o, ty, tya tz)
15 Vi(u) = RZVI (u) +t* = G(u)x + V!

We construct the full AT A and the corresponding
ATb as follows and solve it using singular value
decomposition.

G(u) = [[Vi/ ()] x [303]

AT = G(u) Ni_ (u)

b= ngflT(ngfl -V

The above terms are obtained by deriving the en-
ergy term with respect to x and setting it to zero as
n [2] to minimize the error in the alignment.

min NgT x4+ VI —
g 3N G

VLI

We also tried to use the proposed way in the paper,
however, we weren’t able to make it work for us. In
[2] they sum up the terms in the normal equation in
the GPU and solve the 6 x 6 system in the CPU via
Cholesky decomposition. This would have severely
improved our performance as our main bottleneck
currently is the SVD we are solving. The normal
equation mentioned is also as follows using the A
and b terms constructed before:

D (ATA)z=>" AT

u

5 Experiments and Results

All experiments were performed using TUM RGB
Dataset [5]. We could not generate our own se-
quences due to the lack of a Kinect sensor. We
have run our code at our own personal desktop
PC, which is equipped with a NVIDIA RTX 3070
GPU. And timings of individual methods are as
follows:

Step Time(ms)
Pose Estimation 90
Update Reconstruction | 52
Surface Prediction 32
Surface Measurement 26

The correctness of our method was tested in two
main scenarios: freiburgl_ryz which focuses on
translation and freiburgl_rpy which mainly tests
rotation. These sequences allowed us to find flaws
in our implementation during development.

Pose estimation is a core part of the method. An
incorrectly estimated pose would end in a wrong
TSDF because mistaken voxels would be updated
complicating the alignment of further frames. If
the small-angle assumption in consecutive move-
ments is not respected in consecutive frames the
estimated pose using linearized ICP will fail. This
quickly leads to the failure of the application, since
it cannot find any correspondences between frames
due to wrong updates and predictions. We have
also evaluated our method with freiburgl_360 se-
quence which includes fast movements between
frames and our model was not able to produce
a clean reconstruction. An example can be seen
in figure 6 where the reconstruction becomes very
noisy due to fast movement between frames and
incorrect TSDF updates.

Scenes with large planar objects filling most of the
sensor’s field of view are the main failure case for
this method. These types of scenarios produce an
unconstrained linear system for the pose estima-
tion because the correspondences are estimated us-
ing point-to-plane matching criteria.

Figure 6: Failure of the reconstruction due to violation of small-
angle assumption. Comparison of the reconstructed surfaces at
frame 1 and 10.

Figure 7: Predicted surface generated from freiburgl_rpy
dataset. The movement of this sequences is particularly focused
on rotations. The method is able to estimate the poses properly
using linearized ICP.

Figure 8: Predicted surface generated from freiburgl_teddy
dataset. Reconstruction of the dataset after 300 frames.

Due to time and resource limitations we were not
able to fully optimize the pipeline for real-time ap-
plications, however we are able to run the whole
pipeline in around 5 frames per second.

6 Conclusion

In conclusion, our implementation successfully fol-
lows the paper’s pipeline and is capable of recon-
structing dense surface representations given that
the small-angle assumption is fulfilled. Our only
shortcoming is the lack of real-time performance.
We were not able to implement the ICP step same
as the paper, which led to a performance bottle-
neck because we generate a larger system of equa-
tions: (Number of matches) x 6. And it is costly
to solve such a system at every ICP iteration. We
have also observed that the method is strongly de-
pendent on the estimated camera position. A lim-
itation of our implementation is solving the lin-
ear system to estimate the camera position. Al-
though we implemented the approach described by
[2], which allowed us to take advantage of modern
GPGPUs, the estimated camera positions were not
accurate enough to process long sequences with it.
For that reason, we solve a linear system of dimen-
sions #correspondences x 6 using SVD in CPU.
This system has bigger dimensionality than the
one suggested by the original work but it produced
better results in our experiments.

References

[1] J. Engel, V. Koltun, and D. Cremers. Direct sparse
odometry. In arXiv:1607.02565, July 2016.

[2] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli,
Jamie Shotton, Steve Hodges, Dustin Freeman, An-
drew Davison, and Andrew Fitzgibbon. Kinectfu-
sion: Real-time 3d reconstruction and interaction
using a moving depth camera. In Proceedings of
the 24th Annual ACM Symposium on User Interface
Software and Technology, UIST ’11, page 559-568,
New York, NY, USA, 2011. Association for Com-
puting Machinery.

[3] Georg Klein and David Murray. Parallel tracking
and mapping for small AR workspaces. In Proc.
Sizth IEEE and ACM International Symposium on
Mized and Augmented Reality (ISMAR’07), Nara,
Japan, November 2007.

[4] Georg Klein and David Murray. Parallel tracking
and mapping on a camera phone. In Proc. Figth
IEEE and ACM International Symposium on Mized
and Augmented Reality (ISMAR’09), Orlando, Oc-
tober 2009.

[5] J. Sturm, N. Engelhard, F. Endres, W. Burgard,
and D. Cremers. A benchmark for the evaluation of
rgb-d slam systems. In Proc. of the International
Conference on Intelligent Robot Systems (IROS),
Oct. 2012.

